With the evolution of social media platforms, the Internet is used as a source for obtaining news about current events. Recently, Twitter has become one of the most popular social media platforms that allows public users to share the news. The platform is growing rapidly especially among young people who may be influenced by the information from anonymous sources. Therefore, predicting the credibility of news in Twitter becomes a necessity especially in the case of emergencies. This paper introduces a classification model based on supervised machine learning techniques and word-based N-gram analysis to classify Twitter messages automatically into credible and not credible. Five different supervised classification techniques are applied and compared namely: Linear Support Vector Machines (LSVM), Logistic Regression (LR), Random Forests (RF), Naïve Bayes (NB) and K-Nearest Neighbors (KNN). The research investigates two feature representations (TF and TF-IDF) and different word N-gram ranges. For model training and testing, 10-fold cross validation is performed on two datasets in different languages (English and Arabic). The best performance is achieved using a combination of both unigrams and bigrams, LSVM as a classifier and TF-IDF as a feature extraction technique. The proposed model achieves 84.9% Accuracy, 86.6% Precision, 91.9% Recall, and 89% F-Measure on the English dataset. Regarding the Arabic dataset, the model achieves 73.2% Accuracy, 76.4% Precision, 80.7% Recall, and 78.5% F-Measure. The obtained results indicate that word N-gram features are more relevant for the credibility prediction compared with content and source-based features, also compared with character N-gram features. Experiments also show that the proposed model achieved an improvement when compared to two models existing in the literature.