a b s t r a c tThis paper explores applications of the exponential splitting method for approximating highly oscillatory solutions of the n-dimensional paraxial Helmholtz equation. An eikonal transformation is introduced for oscillation-free platforms and matrix operator decompositions. It is found that the sequential, parallel and combined exponential splitting formulas possess not only anticipated algorithmic simplicity and efficiency, but also the accuracy and asymptotic stability required for highly oscillatory wave computations.