Abstract. A family of spatio-temporal scale-spaces suitable for a moving observer is developed. The scale-spaces are required to be time causal for being usable for real time measurements, and to be "velocity adapted", i.e. to have Galilean covariance to avoid favoring any particular motion. Furthermore standard scale-space axioms: linearity, positivity, continuity, translation invariance, scaling covariance in space and time, rotational invariance in space and recursivity are used. An infinitesimal criterion for scale-spaces is developed, which simplifies calculations and makes it possible to define scale spaces on bounded regions. We show that there are no temporally causal Galilean scale-spaces that are semigroups acting on space and time, but that there are such scale-spaces that are semigroups acting on space and memory (where the memory is the scale-space). The temporally causal scale-space is a time-recursive process using current input and the scale-space as state, i.e. there is no need for storing earlier input. The diffusion equation acting on the memory with the input signal as boundary condition, is a member of this family of scale spaces and is special in the sense that its generator is local.