Abstract.This paper elaborates the theoretical foundations of a semi-differential framework for invariance. Semi-differential invariants combine coordinates and their derivatives with respect to some contour parameter at several points of the image contour, thus allowing for an optimal trade-off between identification of points and the calculation of derivatives. A systematic way of generating complete and independent sets of such invariants is presented. It is also shown that invariance under reparametrisation can be cast in the same framework. The theory is illustrated by a complete analysis of 2D affine transformations. In a companion paper (Pauwels et al. 1995) these affine semidifferential invariants are implemented in the computer program F O R M (Flat Object Recognition Method) for the recognition of planar contours under pseudo-perspective projection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.