Abstract. Adverse pregnancy outcomes can bring enormous losses to both families and the society. Thus, pregnancy outcome prediction stays a crucial research topic as it may help reducing birth defect and improving the quality of population. However, recent advances in adverse pregnancy outcome detection are driven by data collected after mothers having been pregnant. In this situation, if a bad pregnancy outcome is diagnosed, the parents will suffer both physically and emotionally. In this paper, we develop a deep learning algorithm which is able to detect and classify adverse pregnancy outcomes before parents getting pregnant. We train a multi-layer neural network by using a dataset of 75542 couples' multidimension pre-pregnancy health data. Our model outperforms some of algorithms in accuracy, recall and F1 score.