Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways -loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformerbased system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of
Myocardial infarction is one of the most threatening cardiovascular diseases for human beings. With the rapid development of wearable devices and portable electrocardiogram (ECG) medical devices, it is possible and conceivable to detect and monitor myocardial infarction ECG signals in time. This paper proposed a multi-channel automatic classification algorithm combining a 16-layer convolutional neural network (CNN) and long-short term memory network (LSTM) for I-lead myocardial infarction ECG. The algorithm preprocessed the raw data to first extract the heartbeat segments; then it was trained in the multi-channel CNN and LSTM to automatically learn the acquired features and complete the myocardial infarction ECG classification. We utilized the Physikalisch-Technische Bundesanstalt (PTB) database for algorithm verification, and obtained an accuracy rate of 95.4%, a sensitivity of 98.2%, a specificity of 86.5%, and an F1 score of 96.8%, indicating that the model can achieve good classification performance without complex handcrafted features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.