Regarding the effects of UV-B radiation on aquatic ecosystems, recent scientific and public interest has focused on marine primary producers and on the aquatic web, which has resulted in a multitude of studies indicating mostly detrimental effects of UV-B radiation on aquatic organisms. The interest has expanded to include ecologically significant groups and major biomass producers using mesocosm studies, emphasizing species interactions. This paper assesses the effects of UV-B radiation on dissolved organic matter, decomposers, primary and secondary producers, and briefly summarizes recent studies in freshwater and marine systems.Dissolved organic carbon (DOC) and particulate organic carbon (POC) are degradation products of living organisms. These substances are of importance in the cycling of carbon in aquatic ecosystems. UV-B radiation has been found to break down high-molecular-weight substances and make them available to bacterial degradation. In addition, DOC is responsible for short-wavelength absorption in the water column. Especially in coastal areas and freshwater ecosystems, penetration of solar radiation is limited by high concentrations of dissolved and particulate matter. On the other hand, climate warming and acidification result in faster degradation of these substances and thus enhance the penetration of UV radiation into the water column.Several research groups have investigated light penetration into the water column. Past studies on UV penetration into the water column were based on temporally and spatially scattered measurements. The process of spectral attenuation of radiant energy in natural waters is well understood and straightforward to model. Less known is the spatial and temporal variability of in-water optical properties influencing UV attenuation and there are few long-term observations. In Europe, this deficiency of measurements is being corrected by a project involving the development of a monitoring system (ELDONET) for solar radiation using three-channel dosimeters (UV-A, UV-B, PAR) that are being installed from Abisko (North Sweden, 688N, 198E) to Tenerife (Canary Islands, 278N, 178W). Some of the instruments have been installed in the water column (North Sea, Baltic Sea, Kattegat, East and Western Mediterranean, North Atlantic), establishing the first network of underwater dosimeters for continuous monitoring.Bacteria play a vital role in mineralization of organic matter and provide a trophic link to higher organisms. New techniques have substantially changed our perception of the role of bacteria in aquatic ecosystems over the recent past and bacterioplankton productivity is far greater than previously thought, having high division and turnover rates. It has been shown that bacterioplankton play a central role in the carbon flux in aquatic ecosystems by taking up DOC and remineralizing the carbon. Bacterioplankton are more prone to UV-B stress than larger eukaryotic organisms and, based on one study, produce about double the amount of cyclobutane dimers. Recently, th...