Droplet transfer plays a crucial role in welding stability and quality of pulsed gas metal arc weld (GMAW), referring to the process of heat and mass transition. In this work, the appearance, microstructure, microhardness, tensile properties, and impact toughness with three typical modes of droplet transfer in pulsed GMAW (ODMP: one drop per multiple pulses; ODPP: one drop per pulse; MDPP: multiple drops per pulse) were studied and compared. The results showed that the better welding appearance, the deeper penetration, and the less fume covered on the steel plate could be found during the ODPP welding process. At the same wire feeding speed and arc length, the average current was similar in ODPP and MDPP conditions. However, the average current in the ODMP condition was about 15 A larger than the other two, contributing to the higher heat input. Compared with MDPP and ODMP, the longest elongation and impact energy of the welded joint were found in the ODPP condition. Furthermore, the decrease of elongation and impact toughness in the ODMP condition might result from the higher heat input and the coarsen microstructure, like the proeutectoid ferrite and ferrite side plate.