The ceramic-polymer nanocomposites consisting of Ba0.6Sr0.4TiO3 nanofibers (BST60 NF) with a large aspect ratio prepared via electrospinning and employing surface hydroxylated as fillers and poly(vinylidene fluoride) (PVDF) as matrix have been fabricated by a solution casting method. The nanocomposites exhibit enhanced permittivity, reduced loss tangents and improved breakdown electric field strength at a low volume fraction of hydroxylated BST60 NF. The energy density of the nanocomposites is significantly enhanced, and the maximal energy density of 6.4 J/cm(3) is obtained in the composite material with 2.5 wt % hydroxylated BST60 NF, which is more than doubled as compared with the pure PVDF. Such significant enhancements result from combined effect of the large aspect ratio, the surface modification and the improved crystallinity of the nanocomposites induced by the hydroxylated BST60 NF. This work may provide a route for using the hydroxylated ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.
Polymer composite flexible films with high dielectric constant are highly desirable in electronic and electrical industry. Higher loading of the ceramic fillers is usually needed in order to realize high dielectric constant. However, such composites exhibit low breakdown strength and poor mechanical and processing properties. In this work, by incorporating high aspect ratio surface-hydroxylated Ba 0.6 Sr 0.4 TiO 3 nanotubes (BST NT) prepared via electrospinning into a polyvinylidene-fluoride (PVDF) matrix, PVDF nanocomposite flexible films with high dielectric constant have been successfully obtained. The nanocomposite containing 10 vol% BST NT-OH has a dielectric constant of 48.2 at 1 kHz, which is 6.1 times higher than that of the pure PVDF (7.9). The dielectric properties of the composites are closely related to the combined effects of the surface modification, large aspect ratio, high surface area and paraelectric polarization behavior of the BST NT.
Ferroelectric-relaxor behavior of Ba(Zr0.3Ti0.7)O3 nanofibers (BZT NF) with a large aspect ratio were prepared via electrospinning and surface modified by PVP as dielectric fillers. The nanocomposite flexible films based on surface modified BZT NF and polyvinylidene fluoride (PVDF) were fabricated via a solution casting. The results show that the surface-modified BZT NF fillers are highly dispersed and well integrated in the PVDF nanocomposites. The nanocomposites exhibit enhanced dielectric constant and reduced loss tangents at a low volume fraction of surface-modified BZT NF. The polymer nanocomposites maintain a relatively high breakdown strength, which is favorable for enhancing energy storage density in the nanocomposites. The nanocomposite containing of 2.5 vol. % of PVP modified BZT NF exhibits energy density as high as 6.3 J/cm3 at 3800 kV/cm, which is more than doubled that of the pure PVDF of 2.8 J/cm3 at 4000 kV/cm. Such significant enhancement could be attributed to the combined effects of the surface modification and large aspect ratio of the BZT NF. This work may provide a route for using the surface modified ferroelectric-relaxor behavior of ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.