Airflow occurring in a ventilation duct is characterized by low velocity and hence low Reynolds number. In these conditions, either a laminar, transitional or turbulent flow will occur. Different flow conditions result in different values of the friction coefficient. To achieve the transitional flow in numerical simulation, a modified algebraic model for bypass transition (modified k−ω) was used. Numerical simulation was validated using Particle Tracking Velocimetry (PTV) in the circular channel. The modified algebraic model consists of only two partial differential equations, which leads to much faster calculation than the shear stress transport model. Results of the modified algebraic model are largely consistent with either the measurement and shear stress transport model considering laminar and transitional flow. Consistency slightly decreased in turbulent flow in relation to the model using shear stress transport method.