This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2 nanoparticles, the second one contained Al2O3 nanoparticles, and the third one the Cu nanoparticles.
Purpose
For internal flows with small values of the Reynolds number, there is often at a considerable distance from the pipe inlet cross-section a change of the flow form from laminar to turbulent. To describe this phenomenon of laminar-turbulent transition in the pipe, also parallel-plate channel flow, a modified algebraic intermittency model was used. The original model for bypass transition developed by S. Kubacki and E. Dick was designed for simulating bypass transition in turbomachinery.
Design/methodology/approach
A modification of mentioned model was proposed. Modified model is suitable for simulating internal flows in pipes and parallel-plate channels. Implementation of the modified model was made using the OpenFOAM framework. Values of several constants of the original model were modified.
Findings
For selected Reynolds numbers and turbulence intensities (Tu), localization of laminar breakdown and fully turbulent flow was presented. Results obtained in this work were compared with corresponding experimental results available in the literature. It is particularly worth noting that asymptotic values of wall shear stress in flow channels and asymptotic values of axis velocity obtained during simulations are similar to related experimental and theoretical results.
Originality/value
The modified model allows precision numerical simulation in the area of transitional flow between laminar, intermittent and turbulent flows in pipes and parallel-plate channels. Proposed modified algebraic intermittency model presented in this work is described by a set of two additional partial differential equations corresponding with k-omega turbulence model presented by Wilcox (Wilcox, 2006).
Original scientific paper https://doi.org/10.2298/TSCI19S4123N Modified algebraic intermittency model developed by E. Dick and S. Kubacki was used to describe laminar-turbulent transition. In this work a modification of this model was made for simulating internal flows in pipes and parallel-plate channel. In particular, constants present in this model were modified. These modified constants are the same for different flows in pipes and parallel-plate channels. In this work, a dependence of friction factor on Reynolds number and turbulence intensity were determined as well as the localization of laminar breakdown and fully developed flow. Obtained results were compared with theoretical and experimental data presented in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.