A modified lattice hydrodynamic model is proposed, in which the impact of strong wind and the optimal estimation of flux difference integral are simultaneously analyzed. Based on the control theory, the stability condition is acquired through linear analysis. The modified Korteweg-de Vries (mKdV) equation is derived via nonlinear analysis, in order to express a description of the evolution of density waves. Then, numerical simulation is conducted. From the simulation results, strong wind can largely influence the traffic flow stability. The stronger the wind becomes, the more stable the traffic flow is, to some extent. Similarly, the optimal estimation of flux difference integral also contributes to stabilizing traffic flow. The simulation results show no difference compared with the theoretical findings. In conclusion, the new model is able to make the traffic flow more stable.