2022
DOI: 10.1038/s41598-022-06329-x
|View full text |Cite
|
Sign up to set email alerts
|

An improved farmland fertility algorithm for many-objective optimization problems

Abstract: Recent studies on many-objective optimization problems (MaOPs) have tended to employ some promising evolutionary algorithms with excellent convergence accuracy and speed. However, difficulties in scalability upon MaOPs including the selection of leaders, etc., are encountered because the most evolutionary algorithms are proposed for single-objective optimization. To further improve the performance of many-objective evolutionary algorithms in solving MaOPs when the number of the objectives increases, this paper… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance