BackgroundTo determine whether and how exosomes from human umbilical vein endothelial cells (HUVEC-Exos) regulates vascular smooth muscle cells (VSMCs) calcification/senescence in high glucose condition.MethodsHUVEC-Exos were isolated from normal glucose (NG) and high glucose (HG) stimulated HUVECs (NG/HG-HUVEC-Exos) by super speed centrifugation. HUVEC-Exos were identified by transmission electron microscopy and Western blot of CD63. Protein profile in HUVEC-Exos was examined to screen the candidate molecules that mediate HUVEC-Exos function. VSMCs were incubated with HUVEC-Exos. A series of functional assays in vitro were performed to assess the effects of HUVEC-Exos on the calcification/senescence of VSMCs. The role of the candidate protein in HUVEC-Exos-induced VSMCs dysfunction was assessed.ResultsExosomes isolated from HG-HUVEC-Exos induced calcification/senescence in VSMCs as assessed by Alizarin Red Staining, senescence-associated β-galactosidase (SA-β-gal) staining, and the expression of ALP and p21. HG-HUVEC-Exos significantly increased LDH activity, as well as the product of lipid peroxidation (MDA content), and decreased oxidative stress marker activity, as compared with NG-HUVEC-Exos. Moreover, mechanism studies showed that mitochondrial membrane potential and the expression levels of mitochondrial function related protein HADHA and Cox-4 were significantly decreased in HG-HUVEC-Exos compared to controls. Proteomic analysis showed that HG-HUVEC-Exos consisted of higher level of versican (VCAN), as compared with NG-HUVEC-Exos. Observation under laser confocal microscopy revealed that most green fluorescence of VCAN could overlap with the red fluorescence came from mitochondria, indicating VCAN is mainly localized to the mitochondria of VSMCs. Knockdown of VCAN with siRNA in HUVECs, inhibited HG-HUVEC-Exos-induced mitochondrial dysfunction and calcification/senescence of VSMCs.ConclusionsOur data indicate an intracellular role for VCAN in VSMCs. VCAN participates in hyperglycemia-induced calcification/senescence via modulation of mitochondrial function in VSMCs.Electronic supplementary materialThe online version of this article (10.1186/s13578-018-0263-x) contains supplementary material, which is available to authorized users.
The aim was to apply AWGS criteria to estimate the prevalence of sarco-osteoporosis and investigate its relationship with frailty, in a sample of 316 community-dwelling Chinese older people. Regression analysis was performed using frailty as the dependent variable. The results showed that the prevalence rate of sarco-osteoporosis was 10.4% in older men and 15.1% in older women. ≧80 years old (OR 4.8; 95% CI, 3.05–10.76; P = 0.027), women (OR 2.6; 95% CI, 1.18–2.76; P = 0.036), and higher level of comorbidity (OR 3.71; 95% CI, 1.61–10.43; P = 0.021) were independently associated with the likelihood of being sarco-osteoporosis. In the frail group, sarco-osteoporosis occurred in 26.3% of men, in 38.5% of women, and in lower proportion in the prefrail (13.6% of men; 16.2% of women) and nonfrail group (1.6% of men; 1.9% of women) (P < 0.05, resp.). Furthermore, the likelihood of being frail/prefrail was substantially higher in the presence of sarco-osteoporosis (OR 4.16; 95% CI, 2.17–17.65; P = 0.019 in men; and OR 4.67; 95% CI, 2.42–18.86; P = 0.007 in women). The results indicate that patients with sarco-osteoporosis are more likely to be ≧80 yrs with higher burden of comorbidities and to have frailty/prefrailty, especially for women.
A series of novel trans-ferulic acid derivatives containing a chalcone moiety were designed and synthesized to induce plant resistance. Antiviral activities of the compounds were evaluated. Bioassay results demonstrated that compounds F3, F6, F17, and F27 showed remarkable curative, protective, and inactivating activities against tobacco mosaic virus (TMV). With a 50% effective concentration (EC) value of 98.78 μg mL, compound F27 exhibited the best protective activity compared with trans-ferulic acid (328.6 μg mL), dufulin (385.6 μg mL), and ningnanmycin (241.3 μg mL). This protective ability was associated with potentiation of defense-related enzyme activity and activation of photosynthesis of tobacco at an early stage. This notion was confirmed by up-regulated expression of stress responses and photosynthesis regulating proteins. This work revealed that F27 can induce resistance and enhance plant tolerance to TMV infection. Hence, F27 can be considered as a novel activator for inducing plant resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.