The effect of metallic (Fe, Cu, Co, Ni, Ti) and non-metallic additives (Si, B) on the formation of fullerenes from graphite powders was studied in radiofrequency (RF) thermal plasma. The main component of the synthesized fullerene mixtures was C60, but higher fullerenes (C70, C82, and C84) could be detected as well. Fe and Cu additives increased the fullerene content in the soot. In contrast, the fullerene formation decreased in the presence of Ti, Si, and B as compared to the synthesis without additives. However, Ti and B addition enhanced the formation of higher fullerenes. We provide experimental evidence that decreasing the reactor pressure results in a lower yield of fullerene production, in accordance with thermodynamic calculations and numerical simulations published earlier. In the presence of titanium, a significant quantity of TiC was also formed as a by-product. The fullerene mixture synthesized with boron additives showed higher stability during storage in ambient conditions as compared to other samples.