An Improved Seismic Fault Interpretation in a Structurally Complex Geologic Setting Using a Pretrained CNN Model and Seismic Attributes: An Example from the Browse Basin, Australia
Abstract:Fault detection is an important step for subsurface interpretation and reservoir characterization from 3D seismic images. Due to the numerous and complicated faulting structures of seismic images, manual seismic interpretation is time taking and need intensive work. To overcome this problem, geoscientists are coming up with productive computer-aided techniques for assisting in interpreter science for many years. However, in this paper, we used a pre-trained CNN model to predict faults from the 3D seismic volum… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.