This study identified the Pleistocene depositional succession of the group (A) (marine, estuarine, and fluvial depositional systems) of the Melor and Inas fields in the central Malay Basin from the seafloor to approximately −507 ms (522 m). During the last few years, hydrocarbon exploration in Malay Basin has moved to focus on stratigraphic traps, specifically those that existed with channel sands. These traps motivate carrying out this research to image and locate these kinds of traps. It can be difficult to determine if closely spaced-out channels and channel belts exist within several seismic sequences in map-view with proper seismic sequence geomorphic elements and stratigraphic surfaces seismic cross lines, or probably reinforce the auto-cyclic aggregational stacking of the avulsing rivers precisely. This analysis overcomes this challenge by combining well-log with three-dimensional (3D) seismic data to resolve the deposition stratigraphic discontinuities’ considerable resolution. Three-dimensional (3D) seismic volume and high-resolution two-dimensional (2D) seismic sections with several wells were utilized. A high-resolution seismic sequence stratigraphy framework of three main seismic sequences (3rd order), four Parasequences sets (4th order), and seven Parasequences (5th order) have been established. The time slice images at consecutive two-way times display single meandering channels ranging in width from 170 to 900 m. Moreover, other geomorphological elements have been perfectly imaged, elements such as interfluves, incised valleys, chute cutoff, point bars, and extinction surfaces, providing proof of rapid growth and transformation of deposits. The high-resolution 2D sections with Cosine of Phase seismic attributes have facilitated identifying the reflection terminations against the stratigraphic amplitude. Several continuous and discontinuous channels, fluvial point bars, and marine sediments through the sequence stratigraphic framework have been addressed. The whole series reveals that almost all fluvial systems lay in the valleys at each depositional sequence’s bottom bars. The degradational stacking patterns are characterized by the fluvial channels with no evidence of fluvial aggradation. Moreover, the aggradation stage is restricted to marine sedimentation incursions. The 3D description of these deposits permits distinguishing seismic facies of the abandoned mud channel and the sand point bar deposits. The continuous meandering channel, which is filled by muddy deposits, may function as horizontal muddy barriers or baffles that might isolate the reservoir body into separate storage containers. The 3rd, 4th, and 5th orders of the seismic sequences were established for the studied succession. The essential geomorphological elements have been imaged utilizing several seismic attributes.
This study focuses on the sequence stratigraphy and the dominated seismic facies in the Central Taranaki basin. Four regional seismic sequences namely SEQ4 to SEQ1 from bottom to top and four boundaries representing unconformities namely H4 to H1 from bottom to top have been traced based on the reflection terminations. This was validated using well logs information. An onlapping feature on the seismic section indicates a new perspective surface separated between the upper and lower Giant formation, which indicates a period of seawater encroachment. This study focused extensively on deposition units from SEQ4 to SEQ1. The seismic facies, isochron map, and depositional environment were determined, and the system tract was established. This study was also able to propose a new perspective sequence stratigraphy framework of the basin and probable hydrocarbon accumulations and from the general geological aspect, SA-Middle Giant Formation (SEQ3) could act as potential traps.
The waveform classification is a machine learning method for pattern recognition, aims to classify areas of comparable waveforms, along a seismic horizon. It excels in mapping the subtle changes in seismic response and identifies facies and reservoir properties in greater detail compared to other seismic attributes. The waveform classification was applied to identify the stratigraphic architecture and the depositional elements of the coal-bearing Group E in the Northern Malay Basin. The studied interval is characterized by thin sand reservoirs, shale, and significant occurrence of coal beds. Although coal is a major source rock in the Northern Malay Basin and offers good marker horizons for structural seismic interpretation, it introduces uncertainty in seismic attributes analysis due to its masking effect on seismic data. The generated waveform classification maps revealed that the interval is deposited in a channel-dominated deltaic setting. Depositional elements such as distributary channels, distributary mouth bars, and subaqueous levees were identified on the maps. Well calibration indicated that the distributary channels and the distributary mouth bars are good sand reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.