This study identified the Pleistocene depositional succession of the group (A) (marine, estuarine, and fluvial depositional systems) of the Melor and Inas fields in the central Malay Basin from the seafloor to approximately −507 ms (522 m). During the last few years, hydrocarbon exploration in Malay Basin has moved to focus on stratigraphic traps, specifically those that existed with channel sands. These traps motivate carrying out this research to image and locate these kinds of traps. It can be difficult to determine if closely spaced-out channels and channel belts exist within several seismic sequences in map-view with proper seismic sequence geomorphic elements and stratigraphic surfaces seismic cross lines, or probably reinforce the auto-cyclic aggregational stacking of the avulsing rivers precisely. This analysis overcomes this challenge by combining well-log with three-dimensional (3D) seismic data to resolve the deposition stratigraphic discontinuities’ considerable resolution. Three-dimensional (3D) seismic volume and high-resolution two-dimensional (2D) seismic sections with several wells were utilized. A high-resolution seismic sequence stratigraphy framework of three main seismic sequences (3rd order), four Parasequences sets (4th order), and seven Parasequences (5th order) have been established. The time slice images at consecutive two-way times display single meandering channels ranging in width from 170 to 900 m. Moreover, other geomorphological elements have been perfectly imaged, elements such as interfluves, incised valleys, chute cutoff, point bars, and extinction surfaces, providing proof of rapid growth and transformation of deposits. The high-resolution 2D sections with Cosine of Phase seismic attributes have facilitated identifying the reflection terminations against the stratigraphic amplitude. Several continuous and discontinuous channels, fluvial point bars, and marine sediments through the sequence stratigraphic framework have been addressed. The whole series reveals that almost all fluvial systems lay in the valleys at each depositional sequence’s bottom bars. The degradational stacking patterns are characterized by the fluvial channels with no evidence of fluvial aggradation. Moreover, the aggradation stage is restricted to marine sedimentation incursions. The 3D description of these deposits permits distinguishing seismic facies of the abandoned mud channel and the sand point bar deposits. The continuous meandering channel, which is filled by muddy deposits, may function as horizontal muddy barriers or baffles that might isolate the reservoir body into separate storage containers. The 3rd, 4th, and 5th orders of the seismic sequences were established for the studied succession. The essential geomorphological elements have been imaged utilizing several seismic attributes.
3D-seismic data have increasingly shifted seismic interpretation work from a horizons-based to a volume-based focus over the past decade. The size of the identification and mapping work has therefore become difficult and requires faster and better tools. Faults, for instance, are one of the most significant features of subsurface geology interpreted from seismic data. Detailed fault interpretation is very important in reservoir characterization and modeling. The conventional manual fault picking is a time-consuming and inefficient process. It becomes more challenging and error-prone when dealing with poor quality seismic data under gas chimneys. Several seismic attributes are available for faults and discontinuity detection and are applied with varying degrees of success. We present a hybrid workflow that combines a semblance-based fault likelihood attribute with a conventional ant-tracking attribute. This innovative workflow generates optimized discontinuity volumes for fault detection and automatic extraction. The data optimization and conditioning processes are applied to suppress random and coherent noise first, and then a combination of seismic attributes is generated and co-rendered to enhance the discontinuities. The result is the volume with razor sharp discontinuities which are tracked and extracted automatically. Contrary to several available fault tracking techniques that use local seismic continuity like coherency attributes, our hybrid method is based on directed semblance, which incorporates aspects of Dave Hale’s superior fault-oriented semblance algorithm. The methodology is applied on a complex faulted reservoir interval under gas chimneys in a Malaysian basin, yet the results were promising. Despite the poor data quality, the methodology led to detailed discontinuity information with several major and minor faults extracted automatically. This hybrid approach not only improved the fault tracking accuracy but also significantly reduced the fault interpretation time and associated uncertainty. It is equally helpful in detecting any seismic objects like fracture, chimneys, and stratigraphic features.
The Melor-field of the Malay basin has been investigated using several seismic attributes to present the geological elements accurately. This study used a new seismic attribute to represent the geological features of the study interval. Besides, the application of some seismic attributes was applied to reveal the structural and geomorphological features of the Melor-field. The limited available wells (Melor-Well-1 & Melor-well-2) in the study area resulted in high uncertainty regarding petrophysical parameters, particularly in net sand distribution, while the western and eastern parts did not have any well control. Considerable heterogeneity was evidenced in the reservoir quality between the reservoir encountered in Melor-1 and Melor-2 Wells. Three-dimensional geological modeling was utilized in this study to integrate the geological and 3D seismic results with the well logs and seismic attributes to address the above uncertainties. This helps to estimate the reservoir properties for the distances away from the wellbore. The results showed that the fields of the Malay basin are dominated by semi-flattened depositional sequences with heterolithic interbedding associated with a high degree of vertical heterogeneity. The systems tract has been evaluated, although the study area was very complicated. A new method consisting of multi-seismic attributes, thoroughly picked horizons, well logs, and seismic data, which has been used in this research to establish a reliable sequence stratigraphy and system tract framework. Seismic sequence stratigraphy spectral analysis is a new attribute used to represent a 3D visualization of the studied interval. The original amplitude, coherence, and spectral decomposition have been utilized to display the geological features hidden in the seismic data. These attributes are based on the properties of the seismic data, which itself is the result of relevant geological phenomena. The results of this research can be a wide-based reference for further studies in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.