With the rapid development of mechatronics and robotics technology, the application of robots has been extended from the industrial field to daily life and has become an indispensable part of work and daily life. The accuracy and flexibility of the operator determine the operating efficiency of the robot. Although the level of development of the operator is constantly improving, the traditional operator has a simple structure and generally adopts parallel movement or tightening. The holding structure has poor flexibility and stability, making it difficult to achieve precise position capture and control and cannot meet the requirements of delicate tasks. In this paper, a basic force analysis of the manipulator is carried out, and the change trend of the force and driving force of each joint when the manipulator is grasping objects is obtained, so as to determine that the manipulator can grasp the object stably; then, in the strength analysis of the manipulator, it is determined that the material meets the strength requirements. This paper conducts an output voltage experiment on the static performance and coupling error of the mechanical arm wrist force sensor. Secondly, in order to study the influence of the temperature change in the space environment on the zero-point output of the mechanical arm sensor, a high and low temperature test box are used to simulate the temperature brought by the temperature change to the sensor. Experiments show that the maximum coupling error of the sensor is 1.81%, which is less than 2% of the design index. This indicates that the operator sensor is used to detect the force and torque that the space operator’s edge operator experiences when it interacts with the external environment and provides the necessary power sensing information for power control and compatible operator motion control, completing some complex; the Fine project is an important prerequisite for realizing the intelligence of space operators.