Purpose
Aiming at obtaining a high-quality global path for a mobile robot which works in complex environments, a modified particle swarm optimization (PSO) algorithm, named random-disturbance self-adaptive particle swarm optimization (RDSAPSO), is proposed in this paper.
Design/methodology/approach
A perturbed global updating mechanism is introduced to the global best position to avoid stagnation in RDSAPSO. Moreover, a new self-adaptive strategy is proposed to fine-tune the three control parameters in RDSAPSO to dynamically adjust the exploration and exploitation capabilities of RDSAPSO. Because the convergence of PSO is paramount and influences the quality of the generated path, this paper also analytically investigates the convergence of RDSAPSO and provides a convergence-guaranteed parameter selection principle for RDSAPSO. Finally, a RDSAPSO-based global path planning (GPP) method is developed, in which the feasibility-based rule is applied to handle the constraint of the problem.
Findings
In an attempt to validate the proposed method, it is compared against six state-of-the-art evolutionary methods under three different numerical simulations. The simulation results confirm that the proposed method is highly competitive in terms of the path optimality. Moreover, the computation time of the proposed method is comparable with those of the other compared methods.
Originality/value
Therefore, the proposed method can be considered as a vital alternative in the field of GPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.