Recently, Siamese networks have drawn great attention in visual tracking community because of their balanced accuracy and speed. However, features used in most Siamese tracking approaches can only discriminate foreground from the non-semantic backgrounds. The semantic backgrounds are always considered as distractors, which hinders the robustness of Siamese trackers. In this paper, we focus on learning distractor-aware Siamese networks for accurate and long-term tracking. To this end, features used in traditional Siamese trackers are analyzed at first. We observe that the imbalanced distribution of training data makes the learned features less discriminative. During the off-line training phase, an effective sampling strategy is introduced to control this distribution and make the model focus on the semantic distractors. During inference, a novel distractor-aware module is designed to perform incremental learning, which can effectively transfer the general embedding to the current video domain. In addition, we extend the proposed approach for long-term tracking by introducing a simple yet effective local-to-global search region strategy. Extensive experiments on benchmarks show that our approach significantly outperforms the state-of-thearts, yielding 9.6% relative gain in VOT2016 dataset and 35.9% relative gain in UAV20L dataset. The proposed tracker can perform at 160 FPS on short-term benchmarks and 110 FPS on long-term benchmarks. The code is available at https://github.com/foolwood/DaSiamRPN.
The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a "real-time" experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new longterm tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website 60 .
The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on shortterm tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website 1 .
SUMMARYThe problem of attitude control for a spacecraft model which is nonlinear in dynamics with inertia uncertainty and external disturbance is investigated in this paper. Two sliding mode controllers are proposed to force the state variables of the closed-loop system to converge to the origin in finite time. Specially, the second control design consists of the estimation of the uncertainty and disturbance by adaptive method and thus it achieves the decrease of undesired chattering effectively. Also, simulation results are presented to illustrate the effectiveness of the control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.