Visual object tracking is an important function in many real-time video surveillance applications, such as localization and spatio-temporal recognition of persons. In realworld applications, an object detector and tracker must interact on a periodic basis to discover new objects, and thereby to initiate tracks. Periodic interactions with the detector can also allow the tracker to validate and/or update its object template with new bounding boxes. However, bounding boxes provided by a state-of-the-art detector are noisy, due to changes in appearance, background and occlusion, which can cause the tracker to drift. Moreover, CNN-based detectors can provide a high level of accuracy at the expense of computational complexity, so interactions should be minimized for real-time applications. In this paper, a new approach is proposed to manage detectortracker interactions for trackers from the Siamese-FC family. By integrating a change detection mechanism into a deep Siamese-FC tracker, its template can be adapted in response to changes in a target's appearance that lead to drifts during tracking. An abrupt change detection triggers an update of tracker template using the bounding box produced by the detector, while in the case of a gradual change, the detector is used to update an evolving set of templates for robust matching. Experiments were performed using state-of-the-art Siamese-FC trackers and the YOLOv3 detector on a subset of videos from the OTB-100 dataset that mimic video surveillance scenarios. Results highlight the importance for reliable VOT of using accurate detectors. They also indicate that our adaptive Siamese trackers are robust to noisy object detections, and can significantly improve the performance of Siamese-FC tracking.