In this paper, an analysis of the methodologies proposed in the past years to automate the synthesis of radiofrequency (RF) integrated circuit blocks is presented. In the light of this analysis, and to avoid non-systematic iterations between sizing and layout design steps, a multi-objective optimizationbased layout-aware sizing approach with pre-optimized integrated inductor(s) design space is proposed. An automatic layout generation from netlist to ready-to-fabricate prototype is carried in-the-loop for each tentative sizing solution using an RFspecific module generator, template-based placer and evolutionary multi-net router with pre-optimized interconnect widths. The proposed approach exploits the full capabilities of the most established computer-aided design tools for RF design available nowadays, i.e., RF circuit simulator as performance evaluator, electromagnetic simulator for inductor characterization, and layout extractor to determine the complete circuit layout parasitics. Experiments are conducted over a widely-used circuit in the RF context, showing the advantages of performing complete layout-aware sizing optimization from the very initial stages of the design process.