This paper presents an innovative design for an interior permanent magnet synchronous motor (IPMSM), targeting enhanced performance for electric vehicle (EV) applications. The proposed motor features a double V-shaped rotor structure with irregular ferrite magnets embedded in the slots between the permanent magnets. This design significantly enhances torque performance. Furthermore, a machine learning-based surrogate model is developed by integrating fine and coarse mesh data. Optimized using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), this surrogate model effectively reduces computational time compared to traditional finite element analysis (FEA).