An adaptive robotic system has been developed to be used for hand rehabilitation. Previously developed exoskeletons are either very complex in terms of mechanism, hardware and software, or simple but have limited functionality only for a specific rehabilitation task. Some of these studies use simple position controllers considering only to improve the trajectory tracking performance of the exoskeleton which is inadequate in terms of safety and health of the patient. Some of them focus only on either passive or active rehabilitation, but not both together. Some others use EMG signals to assist the patient, but this time active rehabilitation is impossible unless different designs and control strategies are not developed. The proposed mechanical structure is extremely simple. The middle and the proximal phalanxes are used as a link of consecutively connected two 4-bar mechanisms, respectively. The PIP and MCP joints are actuated by a single electro mechanical cylinder to produce complex flexion and extension movements. It is simpler than similar ones from aspect with the mechanical structure and the biodynamic fit of the hand, making it practicable in terms of production and personal usage. Simple design lets to implement adaptive compliance controller for all active and passive rehabilitation tasks, instead of developing complex and different strategies for different rehabilitation tasks. Furthermore, using the Luenberger observer for unmeasured velocity state variable, an on-line estimation method is used to estimate the dynamic parameters of the system. This makes possible to estimate the force exerted by the patient as well, without a force sensor.
The selection of parameters affects the surface roughness in the additive manufacturing process. This study aims to determine the optimal combination of input parameters for predicting and minimising the surface roughness of samples produced by Fused Deposition Modelling on a 3D printer using a cascade-forward neural network (CFNN) and genetic algorithm. Box-Behnken Design with four independent printing parameters at three levels is used, and 25 parts are fabricated with a 3D printer. Roughness tests are performed on the fabricated parts. Models generated by the hybrid algorithm achieve the best results for predicting and optimising surface roughness in 3D-printed parts. The surface roughness prediction accuracy of the trained CFNN with optimised parameters is more accurate compared to previous random test results.
This study presents a position tracking control method, with reference to Data-Driven Predictive Controller (DDPC), for a Pneumatic Artificial Muscle (PAM) system. The design of predictive controller is created from the subspace identification matrices acquired by input/output data. The control scheme is entirely data-based without explicit use of a model in the control application that can rectify the nonlinearity and uncertainties of the PAM. Firstly, subspace matrices are developed employing the identification method as a predictor by using open-loop experiments. Secondly, the estimated subspace matrices are used to design the so-called DDPC. In this instance, the quadratic programming (QR) decomposition method is used to obtain the prediction matrices. Consequently, experiments are carried out by the PAM actuator with different testing and loading conditions. The real-time experimental results demonstrate the feasibility and efficiency of the suggested control approach for nonlinear systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.