Physical inactivity is a major national concern, particularly among individuals with chronic conditions and/or disabilities. There is an urgent need to devise practical and innovative fitness methods, designed and grounded in physical, psychological and social considerations that will effectively promote physical fitness participation among individuals of all age groups with chronic health condition(s) and/or disabilities. This research is dedicated to achieving Versatile, Individualized, and Generative ORchestrator (VIGOR) to motivate the movement of the people with limited mobility. Tai-Chi is a traditional mind–body wellness and healing art, and its clinical benefits have been well documented. This work presents a Tai-Chi based VIGOR under development. Through the use of Helping, Pushing and Coaching (HPC) functions by following Tai-Chi kinematics, the VIGOR system is designed to make engagement in physical activity an affordable, individually engaging, and enjoyable experience for individuals who live with mobility due to disease or injury. VIGOR consists of the following major modules: (1) seamless human-machine interaction based on the acquisition, transmission, and reconstruction of 4D data (XYZ plus somatosensory) using affordable I/O instruments such as Kinect, Sensor and Tactile actuator, and active-orthosis/exoskeleton; (2) processing and normalization of kinetic data; (3) Identification and grading of kinetics in real time; (4) adaptive virtual limb generation and its reconstruction on virtual reality (VR) or active-orthosis/exoskeleton; and (5) individualized physical activity choreography (i.e., creative movement design). Aiming at developing a deep-learning-enabled rehab and fitness modality through infusing the domain knowledge (physical therapy, medical anthropology, psychology, electrical engineering, bio-mechanics, and athletic aesthetics) into deep neural network, this work is transformative in that the technology can be applied to the broad research areas of intelligent systems, human-computer interaction, and cyber-physical human systems. The resulting VIGOR has significant potentials as both rehabilitative and fitness modalities and can be adapted to other movement modalities and chronic medical conditions (e.g., yoga and balance exercise; fibromyalgia, multiple sclerosis, Parkinson disease).