All-electric and hybrid-electric aircraft are a future transport goal and a possible ‘green’ solution to increasing climate-related pressures for aviation. Ensuring the safety of passengers is of high importance, informed through appropriate reliability predictions to satisfy emerging flight certification requirements. This paper introduces another important consideration related to redundancy offered by multiplex electric motors, a maturing technology which could help electric aircraft manufacturers meet the high reliability targets being set. A concept design methodology is overviewed involving a symbolic representation of aircraft and block modelling of two important figures of merit, reliability, and efficiency, supported by data. This leads to a comparative study of green aircraft configurations indicating which have the most potential now, and in the future. Two main case studies are then presented: an electric tail rotor retrofitted to an existing turbine powered helicopter (hybrid) and an eVTOL aircraft (all-electric), demonstrating the impact of multiplex level and number of propulsion channels on meeting target reliabilities. The paper closes with a summary of the important contribution to be made by multiplex electric machines, well as the advancements necessary for green VTOL aircraft sub-systems, e.g., power control unit and batteries, to improve reliability predictions and safety further.