“…From the perspective of personalization, some researchers allow game players to choose roles, scenes or personalized cognitive training tasks according to their own preferences to achieve personalized game design (Reategui et al, 2006 ; Wei, 2009 ; Hollingdale and Greitemeyer, 2013 ; Lin et al, 2013 ; Li et al, 2016 ; Nagle et al, 2016 ; Orji et al, 2017 ; Orji and Moffatt, 2018 ; Soares et al, 2018 ; Waltemate et al, 2018 ; Zibrek et al, 2018 ; González et al, 2019 ; Knutas et al, 2019 ; Troussas et al, 2019 ). There are also some researchers from the adaptive point of view, by dynamically changing the parameters in the game, automatically adapting to the player's game difficulty, dynamically generating new content and other methods to achieve the adaptive design of the game (Carro et al, 2002 ; Hunicke, 2005 ; Togelius et al, 2010 ; Johnson et al, 2014 ; Li et al, 2014 ; Yannakakis and Togelius, 2015 ; Shaker et al, 2016 ; Schadenberg et al, 2017 ; Soler-Dominguez et al, 2017 ; Ashish et al, 2018 ; Lopes et al, 2018 ; Shi and Chen, 2018 ; Souza et al, 2018 ; Denisova and Cairns, 2019 ; Dey et al, 2019 ; Hendrix et al, 2019 ; Liang et al, 2019 ; Pan et al, 2019 ; Papadimitriou et al, 2019 ; Peng et al, 2019 ; Plass et al, 2019 ; Sepulveda et al, 2019 ). Relevant research showed that adding personalized design to electronic science games for improving cognitive abilities could enhance the cognitive training experience of gamers, stimulate their interest in cognitive training, and better enhance the training experience and cognition ability of gamers (Reategui et al, 2006 ; Wei, 2009 ; Hollingdale and Greitemeyer, 2013 ; Lin et al, 2013 ; Li et al, 2016 ; Nagle et al, 2016 ; Orji et al, 2017 ; Orji and Moffatt, 2018 ; Soares et al, 2018 ; Waltemate et al, 2018 ; Zibrek et al, 2018 ; González et al,…”