2022
DOI: 10.1155/2022/7588303
|View full text |Cite
|
Sign up to set email alerts
|

An Intelligent Fusion Model with Portfolio Selection and Machine Learning for Stock Market Prediction

Abstract: Developing reliable equity market models allows investors to make more informed decisions. A trading model can reduce the risks associated with investment and allow traders to choose the best-paying stocks. However, stock market analysis is complicated with batch processing techniques since stock prices are highly correlated. In recent years, advances in machine learning have given us a lot of chances to use forecasting theory and risk optimization together. The study postulates a unique two-stage framework. F… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
6

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 17 publications
(10 citation statements)
references
References 100 publications
0
4
0
6
Order By: Relevance
“…There are various methods reported for market trend detections using technical analyses in financial trading, such as neuro-fuzzy systems (Chen, Rajan, & Quek, 2020;Tan & Quek, 2010), genetic algorithms (GA) (Aguilar-Rivera, Valenzuela-Rendon, & Rodriguez-Ortiz, 2015;Kaucic, 2010), machine learning (Padhi, Padhy, Bhoi, Shafi, & Yesuf, 2022), deep learning (Li & Bastos, 2020;Ozbayoglu, Gudelek, & Sezer, 2020;Troiano, Villa, & Loia, 2018), reinforcement learning (RL) (Pendharkar & Cusatis, 2018), and hybrid of few models (Alhnaity & Abbod, 2020). Some common technical indicators used in technical analysis include simple moving average (SMA), exponential moving average (EMA), relative strength index (RSI), and moving average convergence divergence (MACD) (Gunduz, Yaslan, & Cataltepe, 2017;Liu & Wang, 2019;Patel, Shah, Thakkar, & Kotecha, 2015).…”
Section: Technical Indicators and Portfolio Managementmentioning
confidence: 99%
“…There are various methods reported for market trend detections using technical analyses in financial trading, such as neuro-fuzzy systems (Chen, Rajan, & Quek, 2020;Tan & Quek, 2010), genetic algorithms (GA) (Aguilar-Rivera, Valenzuela-Rendon, & Rodriguez-Ortiz, 2015;Kaucic, 2010), machine learning (Padhi, Padhy, Bhoi, Shafi, & Yesuf, 2022), deep learning (Li & Bastos, 2020;Ozbayoglu, Gudelek, & Sezer, 2020;Troiano, Villa, & Loia, 2018), reinforcement learning (RL) (Pendharkar & Cusatis, 2018), and hybrid of few models (Alhnaity & Abbod, 2020). Some common technical indicators used in technical analysis include simple moving average (SMA), exponential moving average (EMA), relative strength index (RSI), and moving average convergence divergence (MACD) (Gunduz, Yaslan, & Cataltepe, 2017;Liu & Wang, 2019;Patel, Shah, Thakkar, & Kotecha, 2015).…”
Section: Technical Indicators and Portfolio Managementmentioning
confidence: 99%
“…El uso de métodos de balanceo por submuestreo o sobre muestreo de instancias [408,409,410]. Entre estos métodos, SMOTE es una de las técnicas de sobremuestreo más utilizadas para equilibrar las clases minoritarias y mejorar el rendimiento del modelo [327]. Otra medida muy practica es la ponderación de clases, que consiste en asignar pesos más altos a la clase con instancias deficitarias frente a la clase dominante [411].…”
Section: Equilibrio De Clases Desbalanceadasunclassified
“…A saber, verdaderos positivos (Tp), falsos positivos (FP), falsos negativos (FN) y verdaderos negativos (Tn) (Para más detalles, véase la sección 7.2 Medidas de desempeño). Entre las medidas de evaluación del rendimiento más utilizadas, según las publicaciones de los últimos años, se encuentran Accuracy (Exactitud) [335,338,341], Recall (Sensibilidad) [340,345], F1-Score [327,332,344] y Precision [324,336,339]. Otros estudios han recurrido al uso de métricas más especializadas, como las mencionadas en la Tabla 3.3, para resaltar la magnitud de los resultados obtenidos.…”
Section: Evaluación De Desempeño Del Modelounclassified
See 2 more Smart Citations