Facebook is a popular social networking site. It, like many other new technologies, has potential for teaching and learning because of its unique built-in functions that offer pedagogical, social and technological affordances. In this study, the Facebook group was used as a learning management system (LMS) in two courses for putting up announcements, sharing resources, organizing weekly tutorials and conducting online discussions at a teacher education institute in Singapore. This study explores using the Facebook group as an LMS and the students' perceptions of using it in their courses. Results showed that students were basically satisfied with the affordances of Facebook as the fundamental functions of an LMS could be easily implemented in the Facebook group. However, using the Facebook group as an LMS has certain limitations. It did not support other format files to be uploaded directly, and the discussion was not organized in a threaded structure. Also, the students did not feel safe and comfortable as their privacy might be revealed. Constraints of using the Facebook group as an LMS, implications for practice and limitations of this study are discussed. Practitioner notesWhat is already known about this topic • Facebook has been popularly used by tertiary students, but many students do not want their teachers to be friends on Facebook • Teacher's self-disclosure on Facebook can promote classroom atmosphere, teacher's credibility and student-teacher relationship • Commercial learning management systems (LMSs) have limitations What this paper adds • The Facebook group can be used an LMS as it has certain pedagogical, social and technological affordances • Students are satisfied with the way of using the Facebook group as an LMS
Multichannel EEG is generally used in brain-computer interfaces (BCIs), whereby performing EEG channel selection 1) improves BCI performance by removing irrelevant or noisy channels and 2) enhances user convenience from the use of lesser channels. This paper proposes a novel sparse common spatial pattern (SCSP) algorithm for EEG channel selection. The proposed SCSP algorithm is formulated as an optimization problem to select the least number of channels within a constraint of classification accuracy. As such, the proposed approach can be customized to yield the best classification accuracy by removing the noisy and irrelevant channels, or retain the least number of channels without compromising the classification accuracy obtained by using all the channels. The proposed SCSP algorithm is evaluated using two motor imagery datasets, one with a moderate number of channels and another with a large number of channels. In both datasets, the proposed SCSP channel selection significantly reduced the number of channels, and outperformed existing channel selection methods based on Fisher criterion, mutual information, support vector machine, common spatial pattern, and regularized common spatial pattern in classification accuracy. The proposed SCSP algorithm also yielded an average improvement of 10% in classification accuracy compared to the use of three channels (C3, C4, and Cz).
We present a survey on maritime object detection and tracking approaches, which are essential for the development of a navigational system for autonomous ships. The electro-optical (EO) sensor considered here is a video camera that operates in the visible or the infrared spectra, which conventionally complement radar and sonar and have demonstrated effectiveness for situational awareness at sea has demonstrated its effectiveness over the last few years. This paper provides a comprehensive overview of various approaches of video processing for object detection and tracking in the maritime environment. We follow an approachbased taxonomy wherein the advantages and limitations of each approach are compared. The object detection system consists of the following modules: horizon detection, static background subtraction and foreground segmentation. Each of these has been studied extensively in maritime situations and has been shown to be challenging due to the presence of background motion especially due to waves and wakes. The main processes involved in object tracking include video frame registration, dynamic background subtraction, and the object tracking algorithm itself. The challenges for robust tracking arise due to camera motion, dynamic background and low contrast of tracked object, possibly due to environmental degradation. The survey also discusses multisensor approaches and commercial maritime systems that use EO sensors. The survey also highlights methods from computer vision research which hold promise to perform well in maritime EO data processing. Performance of several maritime and computer vision techniques is evaluated on newly proposed Singapore Marine Dataset.• the difficulty in modeling the dynamics of water (including waves, wakes and foams) for background subtraction and detection of foreground objects, • variations in object appearances due to distance and angle of viewing, and • changes in illumination and weather conditions, such as due to clouds, sunshine, rain, glint, etc.
Existing neural fuzzy (neuro-fuzzy) networks proposed in the literature can be broadly classified into two groups. The first group is essentially fuzzy systems with self-tuning capabilities and requires an initial rule base to be specified prior to training. The second group of neural fuzzy networks, on the other hand, is able to automatically formulate the fuzzy rules from the numerical training data. No initial rule base needs to be specified prior to training. A cluster analysis is first performed on the training data and the fuzzy rules are subsequently derived through the proper connections of these computed clusters. However, most existing neural fuzzy systems (whether they belong to the first or second group) encountered one or more of the following major problems. They are (1) inconsistent rule-base; (2) heuristically defined node operations; (3) susceptibility to noisy training data and the stability-plasticity dilemma; and (4) needs for prior knowledge such as the number of clusters to be computed. Hence, a novel neural fuzzy system that is immune to the above-mentioned deficiencies is proposed in this paper. This new neural fuzzy system is named the generic self-organizing fuzzy neural network (GenSoFNN). The GenSoFNN network has strong noise tolerance capability by employing a new clustering technique known as discrete incremental clustering (DIC). The fuzzy rule base of the GenSoFNN network is consistent and compact as GenSoFNN has built-in mechanisms to identify and prune redundant and/or obsolete rules. Extensive simulations were conducted using the proposed GenSoFNN network and its performance is encouraging when benchmarked against other neural and neural fuzzy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.