1999
DOI: 10.1016/s0010-4485(98)00076-1
|View full text |Cite
|
Sign up to set email alerts
|

An introduction to line geometry with applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
56
0

Year Published

2000
2000
2022
2022

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 96 publications
(56 citation statements)
references
References 13 publications
0
56
0
Order By: Relevance
“…In this work, in order to estimate the axis, two methods are implemented: the normal intersections method (Pottmann et al 1999) (henceforth denoted as Π 1 ) and the curvature centres method (Cao and Mumford 2002) (from now on denoted as Π 2 ). These rules must be stated in the tolerance specification.…”
Section: The Intrinsic Derived Reference Association: the Case Of Thementioning
confidence: 99%
“…In this work, in order to estimate the axis, two methods are implemented: the normal intersections method (Pottmann et al 1999) (henceforth denoted as Π 1 ) and the curvature centres method (Cao and Mumford 2002) (from now on denoted as Π 2 ). These rules must be stated in the tolerance specification.…”
Section: The Intrinsic Derived Reference Association: the Case Of Thementioning
confidence: 99%
“…Thus, the question is whether the lines on the objects near their realization are close -within some tolerance -to the lines of a linear complex. This is an approximation or regression problem in line space (Helmut et al, 1999 The topic about the Klein mapping and special sets of lines can refer to the paper written by Pottmann et al (Pottmann et al, 1999). lines and are associated with a line at infinity.…”
Section: Line Geometry and Plücker Coordinatesmentioning
confidence: 99%
“…The singularity of this matrix therefore means that there will be a linear dependence between these vectors. Grassmann showed that linear dependence of Plücker vectors induced www.intechopen.com geometric relations between the associated lines, so that a set of n Plücker vectors creates a variety with dimension m<n. A thorough introduction to Grassmann geometry please refers to (Pottmann et al, 1999). The applications of Grassmann geometry can be found in references (Collins & Long, 1995;Hao & McCarthy, 1998;Wu et al, 2006).…”
Section: Line Geometry and Plücker Coordinatesmentioning
confidence: 99%
See 2 more Smart Citations