2005
DOI: 10.1016/j.sysconle.2005.04.003
|View full text |Cite
|
Sign up to set email alerts
|

An invariance principle for nonlinear switched systems

Abstract: In this paper we address the problem of extending La Salle Invariance Principle to switched system. We prove an extension of the invariance principle relative to dwell-time switched solutions, and a second one relative to constrained switched systems.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
109
0
9

Year Published

2007
2007
2018
2018

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 147 publications
(119 citation statements)
references
References 17 publications
1
109
0
9
Order By: Relevance
“…6 By marginally unstable we mean a switching sequence for which all solutions are bounded and for which there is one solution that does not converge to 0.…”
Section: Describing Functions For Switched Systemsmentioning
confidence: 99%
“…6 By marginally unstable we mean a switching sequence for which all solutions are bounded and for which there is one solution that does not converge to 0.…”
Section: Describing Functions For Switched Systemsmentioning
confidence: 99%
“…Most work on stability of switched systems assumes that all subsystems have a common equilibrium point. [4,5,6] consider weak Lyapunov functions in the style of LaSalle for a common equilibrium. [7] considers equilibrium location changes, but holds the vector field constant.…”
Section: Introductionmentioning
confidence: 99%
“…(t, x 0 ), ou simplesmente ϕ(t, x 0 ), a solução de (1) com condição inicial x 0 no tempo t = 0 através da lei de chaveamento dwell-time σ(t). Para fácil compreensão do resultado principal, algumas definições preliminares, as quais podem ser encontradas em [7] e [3], são apresentadas. Definição 2.1.…”
Section: Preliminaresunclassified
“…Uma das ferramentas mais importantes para estudar o comportamento assintótico das soluções de sistemas dinâmicosé o Princípio de Invariância de LaSalle. Este resultado foi primeiramente desenvolvido para equações diferenciais ordinárias 2 autônomas definidas em espaço de dimensão finita [6] e depois o resultado foi estendido para outras classes de sistemas dinâmicos incluindo equações diferenciais funcionais [4], sistemas descontínuos [2] e sistemas chaveados [3,5,9,12].…”
Section: Introductionunclassified
See 1 more Smart Citation