The dependence of magnetic Barkhausen emissions (MBE) upon both field excitation and detection frequencies and excitation wave form was studied in order to investigate two of several crucial factors which affect the emissions. Sinusoidal, triangular, and square wave forms were used to generate the MBE and the pulse height spectra, frequency spectra, and pulse wave forms of these signals were analyzed. The frequency spectra of sinusoidal and triangular alternating field excitations showed similar behavior but the spectrum under square wave excitation was different due to the existence of high frequency components during square wave switching. As yet, no common standard has been agreed upon for parameterization and representation of Barkhausen signals. It appears from this work that field excitation wave form and frequency should define the inputs, while detection frequency range, pulse height spectrum, frequency spectrum, and emitted pulse wave form analysis should be used to quantify the output. Comprehensive analysis of Barkhausen emission spectra using pulse height analysis, frequency spectrum, and pulse wave form analysis The dependence of magnetic Barkhausen emissions (MBE) upon both field excitation and detection frequencies and excitation wave form was studied in order to investigate two of several crucial factors which affect the emissions. Sinusoidal, triangular, and square wave forms were used to generate the MBE and the pulse height spectra, frequency spectra, and pulse wave forms of these signals were analyzed. The frequency spectra of sinusoidal and triangular alternating field excitations showed similar behavior but the spectrum under square wave excitation was different due to the esistence of high frequency components during square wave switching. As yet, no common standard has been agreed upon for parameterization and representation of Barkhausen signals. It appears from this work that field excitation wave form and frequency should define tho inputs, while detection frequency range, pulse height spectrum, frequency sptlctrum, and emitted pulse wave form analysis should be used to quantify the output.
Keywords