A new conformation has recently been reported for ubiquitin (Ub). This invisible conformation (Ub-CR), where the C-terminal tail is retracted, has a key functional role in phosphorylation of the Ser65 residue, a trigger for PINK1 and Parkin dependent mitophagy. Here we calculate the transition mechanism and associated rates for the Ub to Ub-CR pathway in the wild type protein and a selection of mutants. We predict a cooperative one-step process with a transition state that resembles the Ub configuration, characterised by loss of all interactions of the C-terminal tail with surrounding residues, and an open ubiquitin scaffold. The calculated observables agree well with reported values, and we make a range of predictions to guide future experiments. In particular, the effect of mutations on the pathway and the corresponding structural ensembles should have observable consequences. This crosstalk between theory and experiment promises new insight into key cellular processes.