A role for norepinephrine in learning and memory has been elusive and controversial. A longstanding hypothesis states that the adrenergic nervous system mediates enhanced memory consolidation of emotional events. We tested this hypothesis in several learning tasks using mutant mice conditionally lacking norepinephrine and epinephrine, as well as control mice and rats treated with adrenergic receptor agonists and antagonists. We find that adrenergic signaling is critical for the retrieval of intermediate-term contextual and spatial memories, but is not necessary for the retrieval or consolidation of emotional memories in general. The role of norepinephrine in retrieval requires signaling through the beta(1)-adrenergic receptor in the hippocampus. The results demonstrate that mechanisms of memory retrieval can vary over time and can be different from those required for acquisition or consolidation. These findings may be relevant to symptoms in several neuropsychiatric disorders as well as the treatment of cardiac failure with beta blockers.
Identifying new effective therapeutic treatments for lung cancer is critical to improving overall patient survival. We have targeted both the estrogen receptor (ER) and the epidermal growth factor receptor (EGFR) pathways using an ER antagonist, fulvestrant (''Faslodex''), and the selective EGFR tyrosine kinase inhibitor, gefitinib (''Iressa''), in nonsmall cell lung cancer (NSCLC) cells. Rapid activation of phospho-EGFR and phospho-p44/p42 mitogen-activated protein kinase by estrogen was observed, indicating nonnuclear ER transactivation of EGFR. Additionally, EGFR protein expression was down-regulated in response to estrogen and up-regulated in response to fulvestrant in vitro, suggesting that the EGFR pathway is activated when estrogen is depleted in NSCLC cells. Cell growth and apoptosis were examined in several NSCLC lines that express varying amounts of ERB, EGFR, and Neu but no full-length ERa. One cell line contained an EGFR mutation. Cells were exposed to 10 nmol/L estrogen and 10 ng/mL EGF and either 1 Mmol/L fulvestrant or 1 Mmol/L gefitinib alone or in combination. In all cell lines, the drug combination decreased cell proliferation up to 90% and increased apoptosis 2-fold. The relative responses to gefitinib and fulvestrant were similar regardless of ER and EGFR expression and mutation status. In an in vivo lung tumor xenograft model, the drug combination decreased tumor volume in severe combined immunodeficient mice by f60% compared with 49% and 32% for gefitinib and fulvestrant treatment alone, respectively. Antitumor effects of the combination therapy were accompanied by biochemical and histologic evidence of increased apoptosis, decreased phospho-p44/p42 mitogen-activated protein kinase expression, and increased Ki-67 expression compared with individual treatment. These studies provide evidence of a functional interaction between the ER and the EGFR pathways in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.