With more efficient structures, last trends in aeronautics have witnessed an increased flexibility of wings, calling for adequate design and optimization approaches. To correctly model the coupled physics, aerostructural optimization has progressively become more important, being nowadays performed also considering higher-fidelity discipline methods, i.e., CFD for aerodynamics and FEM for structures. In this work a model for high-fidelity gradient-based aerostructural optimization of wings, assisted by algorithmic differentiation and including aerodynamic and structural nonlinearities, is presented. First, the model is illustrated: a key feature lies in its enhanced modularity. Each discipline solver, employing algorithmic differentiation for the evaluation of adjoint-based sensitivities, is interfaced at high-level by means of a wrapper to both solve the aerostructural primal problem and evaluate discrete-consistent gradients of the coupled problem. Second, to demonstrate the feasibility of the method, a framework is ad-hoc set up, within the open-source SU2 multiphysics suite, with the inclusion of a