Background and purpose:Animal studies suggest that exposure to severe ambient hypoxia for several days may have beneficial long-term effects on neurodegenerative diseases. Because, the acute risks of exposing human beings to prolonged severe hypoxia on brain structure and function are uncertain, we conducted a pilot study in healthy persons.
Methods:We included two professional mountaineers (participants A and B) in a 35-day study comprising an acclimatization period and 14 consecutive days with oxygen concentrations between 8% and 8.8%. They underwent cerebral magnetic resonance imaging at seven time points and a cognitive test battery covering a spectrum of cognitive domains at 27 time points. We analysed blood neuron specific enolase and neurofilament light chain levels before, during, and after hypoxia.
Results:In hypoxia, white matter volumes increased (maximum: A, 4.3% ± 0.9%; B, 4.5% ± 1.9%) whilst gray matter volumes (A, −1.5% ± 0.8%; B, −2.5% ± 0.9%) and cerebrospinal fluid volumes (A, −2.7% ± 2.4%; B, −5.9% ± 8.2%) decreased. Furthermore, the number (A, 11-17; B, 26-126) and volumes (A, 140%; B, 285%) of white matter hyperintensities increased in hypoxia but had returned to baseline after a 3.5-month recovery phase. Diffusion weighted imaging of the white matter indicated cytotoxic edema formation. We did not observe changes in cognitive performance or biochemical brain injury markers.