Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. Switched-capacitor DC-DC converters are useful alternatives to inductor-based converters in many lowpower and medium-power applications. This work develops a straightforward analysis method to determine a switched-capacitor converter?s output impedance (a measure of performance and power loss). This resistive impedance is a function of frequency and has two asymptotic limits, one corresponding to very high switching frequency where resistive paths dominate the impedance, and one corresponding to very low switching frequency where charge transfers among idealized capacitors dominate the impedance. An optimization method is developed to improve the performance of these converters through component sizing based on practical constraints. Several switched-capacitor converter topologies are compared in the two asymptotic limits. Switched-capacitor converter performance (based on conduction loss) is compared with that of two magnetics-based DC-DC converters. At moderate to high conversion ratios, the switchedcapacitor converter has significantly less conduction loss than an inductor-based buck converter. Some aspects of converter implementation are discussed, including the power loss due to device parasitics and methods for transistor control. Implementation using both integrated and discrete devices is discussed. With the correct analysis methods, switched-capacitor DC-DC converters can provide an attractive alternative to conventional power converters. All rights reserved.Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Next comes my other grad student friends, especially the EEGSA folk, as they help me get out and socialize and occasionally enjoy a beer on someone else's buck. They're a fun bunch of (unfortunately) mostly guys who think that grad school is not all about work. And then there's Ankur, who has always entertained me while doing ME 233 problem sets or th...