As an enhancement of cellular networks, the future-generation 5G network can be considered an ultra-high-speed technology. The proposed 5G network might include all types of advanced dominant technologies to provide remarkable services. Consequently, new architectures and service management schemes for different applications of the emerging technologies need to be recommended to solve issues related to data traffic capacity, high data rate, and reliability for ensuring QoS. Cloud computing, Internet of things (IoT), and software-defined networking (SDN) have become some of the core technologies for the 5G network. Cloud-based services provide flexible and efficient solutions for information and communications technology by reducing the cost of investing in and managing information technology infrastructure. In terms of functionality, SDN is a promising architecture that decouples control planes and data planes to support programmability, adaptability, and flexibility in ever-changing network architectures. However, IoT combines cloud computing and SDN to achieve greater productivity for evolving technologies in 5G by facilitating interaction between the physical and human world. The major objective of this study provides a lawless vision on comprehensive works related to enabling technologies for the next generation of mobile systems and networks, mainly focusing on 5G mobile communications. It inherits three different advantages of various networking technologies, namely, layered structure, standard interfaces and multiple services, and functions that can be implemented in several layers ranging from MAC to application. With the increase in the number of Internet users and QoS requirements, NGN has become a moving trend for deployment. It established convergence of user access and integrated communication network services with IP technology. The motivation behind the migration of networking systems from the traditional telecommunication network to NGN has been developed based on the advantages of backbone cost