For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.Lactic acid bacteria (LAB) play an important role in dairy fermentation processes and have a great influence on the quality and preservation of end products. The primary roles of LAB are to produce lactic acid from lactose, resulting in a pH decrease, and, by proteolysis, to liberate short peptides and free amino acids affecting the flavor and texture of dairy products.Since the concentration of free amino acids and small peptides is insufficient to support the growth of LAB to high cell densities in milk, these bacteria are dependent on a proteolytic system to liberate free amino acids from milk proteins. The proteolytic system of LAB consists of a cell envelope-associated proteinase, membrane-bound transport systems, and several cytoplasmic peptidase classes. The proteolytic system is particularly important in the development of flavor and texture of cheeses (9). Since Lactococcus strains, along with those of Lactobacillus, are widely used as starters in cheese manufacture, substantial effort has been directed in the last two decades toward elucidating the proteolytic mechanism of Lactococcus lactis. More recently, the proteolytic system of lactobacilli has also been extensively examined.Over 10 different peptidase types have been identified in various LAB strains, and a large number of peptidase genes have been cloned from different Lactococcus and Lactobacillus species and characterized (reviewed ...