Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Active ingredient (AI), particularly quercetin (Q), has been known as types of nature-derived chemotherapic agents in cancer treatment. However, the advantages of this agent concerning antineoplastic activity were restricted by its poor water solubility. Therefore, the encapsulation of AI in nano-mediated drug delivery is expected to create diverse effects and can sufficiently increase their therapeutic outcomes. The aim of this present study was to effectively prepare folate-conjugated liposome (L-F) that can enhance the delivery of Q. L-F containing Q (Q-L-F) was successfully prepared by thin film technique, using tween 80-ethylenediamine-acid folic as the surface-modified moiety. Physicochemical parameters, including morphology, particles size, zeta potential, drug encapsulation efficiency and release profiles were investigated. In addition, in vitro cytotoxicity of the prepared formulation was evaluated against NCI-H460 cell line. Results showed that the prepared Q-L-F had a mean size of about 166.8 nm with low polydispersity index (below 0.5) and high encapsulation efficiency (96.6%). The release profile showed a sustained release of Q up to 48 h. Moreover, Q-L-F liposomal system was proposed to have the enhanced toxicity effect toward cancerous cells with expressed folate receptors due to the targeting of folic acid conjugated. In support for this, cell proliferation using SRB assay on NCI-H460 cells demonstrated that Q-L-F exhibited higher cytotoxicity than quercetin loaded conventional liposome (Q-L). For the purpose of researching, the data could serve as proof for the potential of L-F as a sustained delivery system for Q in anti-cancer therapy.
Active ingredient (AI), particularly quercetin (Q), has been known as types of nature-derived chemotherapic agents in cancer treatment. However, the advantages of this agent concerning antineoplastic activity were restricted by its poor water solubility. Therefore, the encapsulation of AI in nano-mediated drug delivery is expected to create diverse effects and can sufficiently increase their therapeutic outcomes. The aim of this present study was to effectively prepare folate-conjugated liposome (L-F) that can enhance the delivery of Q. L-F containing Q (Q-L-F) was successfully prepared by thin film technique, using tween 80-ethylenediamine-acid folic as the surface-modified moiety. Physicochemical parameters, including morphology, particles size, zeta potential, drug encapsulation efficiency and release profiles were investigated. In addition, in vitro cytotoxicity of the prepared formulation was evaluated against NCI-H460 cell line. Results showed that the prepared Q-L-F had a mean size of about 166.8 nm with low polydispersity index (below 0.5) and high encapsulation efficiency (96.6%). The release profile showed a sustained release of Q up to 48 h. Moreover, Q-L-F liposomal system was proposed to have the enhanced toxicity effect toward cancerous cells with expressed folate receptors due to the targeting of folic acid conjugated. In support for this, cell proliferation using SRB assay on NCI-H460 cells demonstrated that Q-L-F exhibited higher cytotoxicity than quercetin loaded conventional liposome (Q-L). For the purpose of researching, the data could serve as proof for the potential of L-F as a sustained delivery system for Q in anti-cancer therapy.
The objective of this work was to precisely design novel lipid composition and investigate for improved characteristics to enhance the bioavailability of isoniazid (INH) loaded in nanostructured lipid carrier (NLC). Response surface methodology (RSM)-Central composite rotatable design (CCRD) was used to evaluate the effect of formulation variables, the ratio of two different solid lipids, solid lipid: liquid lipid, and the drug concentration on response variables. The encapsulation efficiency (EE) of optimized formulation was found to be 72.82±0.49%, drug loading (DL) was 15.15±0.10%, mean particle size (PS) was 285.1±4.71nm and in vitro drug release (DR) was 75.30±1.95% in 24 h. The optimized formulation was investigated via Differential Scanning Calorimetry (DSC), X-Ray Diffraction Pattern (XRD) analysis, in vitro release kinetics and Transmission electron microscopy (TEM). The polydispersity index (PDI) and zeta potential (ZP) were determined as 0.484±0.026 and +21±1.44mV respectively. Formulations were found to be most stable up to 25°C for 6 months. The present study successfully optimized the lipid combination at different concentrations and introduced the best composition of lipids with improved characteristics of INH-NLC formulation and expected to increase the bioavailability of isoniazid to replace the conventional drug delivery system for tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.