In this paper, a unique overview of intelligent machines and mathematical methods designed and developed to measure and to control the water level in industrial or laboratory setups of coupled and cascaded configurations of tanks is made. A systematized and concise overview is made of the mechatronic systems used in the measurement, identification, and control of the water level enumerates, the software used in the associated scientific research, modern techniques and sensors, and mathematical models, as well as analysis and control strategies. The broad overview of applications of the last decade is finalized by a proposition of a control system that is based on a parameter estimation of a new experimental setup, an integral dynamic model of the system, a modern mechatronic machine such as the Watson-Marlow peristaltic pump, the Anderson Negele sensor of level, the NI cRIO-9074 controller, and LabVIEW virtual instrumentation. The results of real experimental tests, exploiting a hybrid proportional control, being improved by a numerically predicted water level, are obtained using a few tools, i.e., the static characteristics, the classical step response, and a new pyramid-shaped step function of a discontinuous path-following reference input, being introduced to evaluate the effectiveness and robustness of the regulation of the level height.