Conventional stretchable electronics entailing the adoption of a wavy design, a neutral mechanical plane, and a conformal contact between abiotic and biotic interfaces have shown diverse skin-interfaced applications. Despite such remarkable progress, there have been challenged to be evolved to intelligent skin prosthetics due to the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, we demonstrate a golden tortoise beetle-inspired stretchable sensory-neuromorphic system comprising an artificial mechanoreceptor, an artificial synapse, and an epidermal photonic actuator as three biomimetic functionalities that correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor (stretchability ~ 160%, conductivity ~ 18,550 S/cm), which allows one to improve both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Our new bioinspired system is therefore expected to be an important step toward the implementation of intelligent wearable electronics.