This work presents an useful tool for constructing the solution of steady-state heat transfer problems, with temperature-dependent thermal conductivity, by means of the solution of Poisson equations. Specifically, it will be presented a procedure for constructing the solution of a nonlinear second-order partial differential equation, subjected to Robin boundary conditions, by means of a sequence whose elements are obtained from the solution of very simple linear partial differential equations, also subjected to Robin boundary conditions. In addition, an a priori upper bound estimate for the solution is presented too. Some examples, involving temperature-dependent thermal conductivity, are presented, illustrating the use of numerical approximations.