The quantum gravity problem that the notion of a quantum state, representing the structure of space-time at some instant, and the notion of the evolution of the state, does not get traction, since there are no real "instants", is avoided by having initial Octonionic geometry embedded in a larger, nonlinear "pilot model" (semi classical) embedding structure. The Penrose suggestion of re-cycled space time avoiding a "big crunch" is picked as the embedding structure, so as to avoid the "instants" of time issue. Getting Octionic gravity as embedded in a larger, Pilot theory embedding structure may restore Quantum Gravity to its rightful place in early cosmology without the complication of then afterwards "Schrodinger equation" states of the universe, and the transformation of Octonionic gravity to existing space-time is explored via its possible linkage to a new version of the HUP involving metric tensors. We conclude with how specific properties of Octonion numbers algebra influence the structure and behavior of the early-cosmology model. This last point is raised in Section 14, and is akin to a phase transition from Pre-Octonionic geometry, in pre-Planckian space-time, to Octonionic geometry in Planckian space-time. A simple phase transition is alluded to; making this clear is as simple as realizing that Pre-Octonionic is for Pre-Planckian Space-time and Octonionic is for Planckian Space-time. We state that the Standard Model of physics occurs during Planckian Space-time. We also argue that the Standard Model does not apply to Pre Planckian Space-time. This is commensurate with the Octonion number system NOT applying in pre-Planckian spacetime, but applying in Plankian space-time. And the last line of Equation (54) gives a minimum time step in pre-Planckian space-time when we do NOT have the Standard Model of physics, or Octonionic Geometry.