“…However, these techniques are not suitable for the investigation of living cells, which can rather be examined with membrane-incorporating, environment-sensitive fluorophores that change their excitation or emission characteristics in response to alterations of a local biophysical parameter. For example, the fluidity of biological membranes can be tested with TMA-DPH (4′-(trimethylammonio)-diphenylhexatriene) using spectrofluorometry, since its fluorescence anisotropy negatively correlates with the rotational freedom of the fluorophore, i.e., fluidity of the membrane, as shown in living cells with altered levels of glucosylceramide, cholesterol, other sterols, and saturated or polyunsaturated fatty acids [ 149 , 150 , 151 , 152 , 153 ]. Membrane hydration can be estimated using Laurdan (6-dodecanoyl-N,N-dimethyl-2-naphthylamine) since the value of generalized polarization quantifying shifts in its emission spectrum shows an inverse correlation with the degree of water penetration into bilayers [ 154 , 155 ].…”