The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we introduce a location-scale model for bivariate survival times based on the copula to model the dependence of bivariate survival data with cure fraction. We create the correlation structure between the failure times using the Clayton family of copulas, which is assumed to have any distribution. It turns out that the model becomes very flexible with respect to the choice of the marginal distributions. For the proposed model, we consider inferential procedures based on constrained parameters under maximum likelihood. We derive the appropriate matrices for assessing local influence under different perturbation schemes and present some ways to perform global influence analysis. The relevance of the approach is illustrated using a real data set and a diagnostic analysis is performed to select an appropriate model.