2021
DOI: 10.30998/string.v5i3.7942
|View full text |Cite
|
Sign up to set email alerts
|

Analisis Clustering Virus MERS-CoV Menggunakan Metode Spectral Clustering Dan Algoritma K-Means

Abstract: <p><em>The MERS-Cov virus has spread to other countries outside Saudi Arabia. This is because the MERS-CoV virus can mutate rapidly so it is feared that it could threaten public health and even world health. This virus develops and becomes an acute respiratory disease and the mortality rate reaches 30% among 536 cases. One way to classify the MERS-CoV virus is by grouping the DNA sequences of the MERS-CoV virus which have similar characteristics and functions. Spectral clustering is a grouping meth… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 1 publication
0
0
0
1
Order By: Relevance
“…hasil dari data yang dinormalisasi tersebut kemudian di cluster menggunakan algoritma partisi k-means. Hasil penelitian menunjukkan bahwa hasil clustering dengan algoritma k-means tiga cluster dan lebih homogen dibandingkan clustering yang hanya menggunakan k-means [9].…”
Section: A Pendahuluanunclassified
“…hasil dari data yang dinormalisasi tersebut kemudian di cluster menggunakan algoritma partisi k-means. Hasil penelitian menunjukkan bahwa hasil clustering dengan algoritma k-means tiga cluster dan lebih homogen dibandingkan clustering yang hanya menggunakan k-means [9].…”
Section: A Pendahuluanunclassified