2021
DOI: 10.35746/jtim.v3i2.159
|View full text |Cite
|
Sign up to set email alerts
|

Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa

Abstract: In this research the author aims to apply the K-NN and Naive Bayes algorithms for predicting student graduation rates at Sekolah Tinggi Pariwisata (STP) Mataram, The comparison of these two methods was carried out because based on several previous studies it was found that K-NN and Naive Bayes are well-known classification methods with a good level of accuracy. But which one has a better accuracy rate than the two algorithms, that's what researchers are trying to do. The output of this application is in the fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 4 publications
0
2
0
3
Order By: Relevance
“…Merupakan suatu metode yang menggunakan algoritma supervised dimana hasil dari Query instance dapat diklasifikasikan berdasarkan mayoritas dari label class pada K-NN [1]. Algoritma K-NN bekerja berdasarkan jarak terpendek dari Query instance ke training data untuk menentukan K-NNnya dan merupakan salah satu cara untuk menghitung jarak dekat [12]…”
Section: K-nearest Neighborsunclassified
“…Merupakan suatu metode yang menggunakan algoritma supervised dimana hasil dari Query instance dapat diklasifikasikan berdasarkan mayoritas dari label class pada K-NN [1]. Algoritma K-NN bekerja berdasarkan jarak terpendek dari Query instance ke training data untuk menentukan K-NNnya dan merupakan salah satu cara untuk menghitung jarak dekat [12]…”
Section: K-nearest Neighborsunclassified
“…Informasi diperoleh melalui observasi data realtime dari webKaggle yang dapat di akses dari link UNCOVER COVID-19 Challenge | Kaggledan survei langsung pada Rumash Sakit Povinsi NTB. Informasi dianalisis untuk mendapatkan data yang dibutuhkan oleh pengguna [12].…”
Section: Analisa Kebutuhanunclassified
“…For higher education institutions, these efforts are useful for identifying students who may not graduate and providing appropriate support to ensure their success (Pelima, Sukmana, & Rosmansyah, 2024). The benefit of graduation prediction is that the results can be used by universities to find useful patterns from large graduation data (Kartarina, Sriwinarti, & Juniarti, 2021;Qisthiano et al, 2021), which are used to predict future graduation outcomes (Basheer, Mutalib, Hamid, Abdul-Rahman, & Malik, 2019). By making predictions, the imbalance between student acceptance and graduation can be overcome, so that students who may not graduate on time can be identified.…”
Section: Introductionmentioning
confidence: 99%
“…It does not explain how the relationship between features affects students' on-time graduation. Meanwhile, the benefit of graduation prediction is to find patterns in large amounts of graduation data (Kartarina et al, 2021;Qisthiano et al, 2021). For this reason, before carrying out the prediction process, further analysis is needed on how the correlation between the features used affects students' on-time graduation.…”
Section: Introductionmentioning
confidence: 99%