Pada umumnya bantuan yang di berikan oleh pemerintah kepada masyarakat terkadang tidak tepat sasaran, karena sebagian masyarakat yang mampu secara ekonomi mendapatkan bantuan sedangkan masih banyak masyarakat yang tidak mampu justru tidak menerima bantuan dari pemerintah. Tujuan dari penelitian ini adalah mengelompokan penerima bantuan sosial yang layak menerima bantuan dan kurang layak menerima bantuan. Solusi yang di berikan dengan menggunakan tahapan penelitian yaitu pengumpulan data, data preprossesing, implementasi metode klasifikasi dan analisa hasil untuk mengetahui hasil akhir. Analisis yang di gunakan adalah data penerima bantuan sosial yang belum di kelompokan dan berdasarkan hasil dalam pengelompokan penerima bantuan sosial menggunakan metode K–means, dari 257 data terdapat 196 data yang termasuk cluster 1 dengan status penerima bantuan sosial tepat sasaran dan 61 data yang termasuk cluster 2 dengan status penerima bantuan sosial tidak tepat sasaran. Dari hasil analisis data dapat ditarik sebuah kesimpulan yaitu masyarakat yang menerima bantuan sudah tepat sasaran karena mayoritas penerima bantuan diterima oleh masyarakat yang benar-benar membutuhkan bantuan dari pemerintah, dimana penerima bantuan bekerja sebagai buruh, tidak memiliki aset dan memiliki penghasilan di bawah Rp 500.000.
Number of Journals in Indonesia is quite a lot and various disciplines. Until March 15, 2018, registered 50,889 online and print ISSN by Indonesian Institute of Science (LIPI). The government through Ministry of Research, Technology, and Higher Education of Republic Indonesia (Kemenristekdikti) set regulated on journal index, that is Science and Technology Index (SINTA) assigned to rank quality content and management divided by six categories called S1 to S6 which of the data is taken from Google Scholar and Scopus. This research applies S1 that these journals are accredited “A” by Kemenristekdikti and or index by Scopus. That’s data is shown ranking by sorted based on h-index and citations. S1 shown that journal which has highest h-index uncertain have highest citations too, even some have zeroes. That’s data on S1 become strange and awkward when compared with S2 to S6 because some value of h-index and citations S1 is lower than S2 to S6. This research focus to find how strong correlation or impact h-index toward citations using linear regression. The test result shows that value of Multiple R = 0.78 indicates the correlative is very close, a value of R Square = 0.61 indicates the impact of h-index toward citations achieve 61% and the rest 39% affected by others factor.
Influencer marketing adalah sebuah metode pemasaran secara digital yang dimana seseorang atau figure yang memiliki pengaruh dimasyarakat atau target konsumen yang dituju dan dirasa bisa menjadi tempat untuk promosi. PT. Lombok Media Utama (Inside Lombok) merupakan perusahaan media independen berbasis media sosial yang menyajikan informasi, berita dan influencer marketing bagi online shop dan UMKM lokal. Permasalahan yang timbul adalah dengan banyaknya client yang bekerja sama dengan Inside Lombok memiliki rata-rata 2000-3000 client tiap tahunnya, Inside Lombok masih manual dalam menentukan jenis client, seperti hanya melihat toko fisik saja atau berdasarkan jumlah follower yang di miliki oleh client. Yang dimana hal itu tidak efektif dalam menentukan jenis client yang terbagi menjadi 3 yaitu: usaha mikro, usaha kecil, dan usaha menengah. Perancangan dan pembuautan sistem klasifikasi jenis client ini menggunakan metodologi CRISP-DM, yaitu metode mengembangan perangkat lunak terdiri dari 6 fase yaitu pemahaman bisnis, pemahaman data, pengolahan data, pemodelan, evaluasi dan penyebaran. Hasil atau keluaran yang akan dicapai yaitu sistem dapat menampilkan jenis client berdasarkan atribut yang telah dimasukan. Kesimpulan dari penelitian ini adalah pertama sistem dapat menampilkan jenis client degan akurasi sebesar 95% hal ini dapat membantu pihak Inside Lombok dalam memilih jenis client dengan cepat dan akurat.
West Nusa Tenggara (NTB) is one of the provinces in Indonesia that has its own charm in the world of tourism and is known as a pioneer of halal tourism. In addition to domestic tourists, NTB tourism always has an attraction for foreign tourists. This is evidenced by the increasing number of foreign tourists visiting NTB from year to year before the Covid-19 pandemic. This condition certainly has a positive impact on increasing NTB’s economic growth in the tourism sector and indirectly on the optimization of existing infrastructure. The purpose of the study is to predict the number of foreign tourist visits to NTB so that it can assist the government in making decisions in preparing adequate facilities and infrastructure in the event of a surge in tourist visits. The method used in this study is the Box-Jenkins-ARIMA model. The ARIMA method is based on 3 models that are formed from the results of plot data. The data used in this study is secondary data sourced from the Central Statistics Agency (BPS) of West Nusa Tenggara (NTB), from January 2010 to June 2019. The results show that the ARIMA (4,1,1) model is the most widely used model. This model is suitable for predicting the number of foreign tourists visiting NTB because this model produces the lowest SSE and MSE values compared to other models.
Education is an effort to build a better human civilization and eliminate human suffering caused by ignorance and underdevelopment in science and technology. In this research, a workshop was held to introduce light sensor technology to enhance elementary students' interest in learning about technology. This research was conducted at SDN 3 Mataram. The research was carried out by dividing 40 participants into 5 groups with each group guided by one mentor. Each group will be guided by a mentor to practice making light sensor technology until the light sensor circuit to turn on the lights can function properly. To find out students' interest in learning is done by making a questionnaire before and after doing the practice. The results obtained from the questionnaire that there is no significant difference between the understanding at the pre test and post test
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.